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Many cortical neurons combine the information ascending and
descending the cortical hierarchy. In the classical view, this infor-
mation is combined nonlinearly to give rise to a single firing-rate
output, which collapses all input streams into one. We ana-
lyze the extent to which neurons can simultaneously represent
multiple input streams by using a code that distinguishes spike
timing patterns at the level of a neural ensemble. Using compu-
tational simulations constrained by experimental data, we show
that cortical neurons are well suited to generate such multiplex-
ing. Interestingly, this neural code maximizes information for
short and sparse bursts, a regime consistent with in vivo record-
ings. Neurons can also demultiplex this information, using specific
connectivity patterns. The anatomy of the adult mammalian cor-
tex suggests that these connectivity patterns are used by the
nervous system to maintain sparse bursting and optimal multi-
plexing. Contrary to firing-rate coding, our findings indicate that
the physiology and anatomy of the cortex may be interpreted as
optimizing the transmission of multiple independent signals to
different targets.

neural coding | cerebral cortex | multiplexing | dendritic computation |
short-term plasticity

V isual, auditory, and motor processing in the mammalian
brain is organized in a hierarchy (1–5). At the bottom of

this hierarchy, ensembles of neurons code a dense array of sim-
ple features such as local visual contrast or simple movement
components. At the top of the hierarchy neurons code more com-
plex features such as complex images and movement sequences.
Given that information travels both up and down the hierarchy
with the power to drive or modulate responses (6–9), we are com-
pelled to an important question: How do populations that receive
both bottom–up and top–down information process these two
different types of messages?

Experimental observations argue for several opposing views.
In one view, descending inputs modulate the bottom–up re-
sponses (7). In a second view, top–down inputs can create
responses de novo (8). A third view arises from conceptual
requirements. In the theories of unsupervised learning, the same
units must simultaneously communicate feature recognition to
higher-order units and a feature prediction to lower-order units
(10, 11). In supervised learning, the higher-order success signal
must percolate down the hierarchy, requiring units to communi-
cate both the credit residual from top to bottom and an activation
from bottom to top (12, 13). Also, in the binding problem, neu-
rons are required to simultaneously signal the presence of a
lower-order feature and its binding to a high-order one, across
modalities (14–16). Hence the third view is that of multiplexing:
The same population needs to communicate different functions
of ascending and descending information, simultaneously and to
possibly different target neurons.

Present neural mechanisms for multiplexing can be separated
into three different categories. First, spike-phase multiplexing
(15, 17) posits that a population represents bottom–up informa-
tion by its firing rate and top–down information by the timing of

its spikes with respect to distinct frequency bands of a local field
potential. This type of frequency-division multiplexing (18) is
supported by multiple experimental studies in different systems
(15, 17), but the cellular mechanisms for encoding and decoding
with the local field potential remain to be fully articulated. A sec-
ond mechanism exploits the difference between time-averaged
firing rate in a single neuron and ensemble-averaged firing rate.
Distinct features of the sensory input can be represented in out-
put features as shown in the auditory brainstem (19), in the
olfactory bulb (20), and in the visual system of flies (21). Here,
however, it is distinct features of the same stimulus that are
represented in distinct features of the neural response, so the
mechanism is closer to the concept of information synergy (22)
than to multiplexing. A third possibility is to allow the neurons to
alternate between different modes: one devoted to the transmis-
sion of ascending information and another for the propagation of
descending information. Time-division multiplexing of this kind
is common in artificial neural networks (10, 12). In a similar
fashion, time-division multiplexing is a useful mechanism in com-
putational models of synaptic plasticity (13, 23, 24), where the
population alternates between sensing and learning phases. Yet
it is not clear how time-division multiplexing can be mapped on
the ongoing activity of cortical networks (9, 23).

In this article we propose a type of multiplexing based on the
separation of bursts and single spikes at the level of an ensem-
ble. Burst coding, we suggest, acts on the level of an ensemble
to represent multiple information streams simultaneously and
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without ambiguity. We study this idea in the thick-tufted pyrami-
dal neurons (TPNs) as a paradigmatic cell type that receives both
bottom–up and top–down signals. Using computational simula-
tions, we show that TPNs can encode two independent streams
of information with high temporal precision. The two streams
can be decoded by postsynaptic populations using short-term
plasticity and disynaptic inhibition. A theoretical analysis demon-
strates that information representation is optimal for short and
sparse bursts, a regime consistent with bursting in vivo. We fur-
ther show that this optimal regime can be preserved by a network
architecture that shares interesting parallels with the anatomy
of dendritic feedback inhibition in the cortex. Finally, we dis-
cuss how the proposed burst ensemble multiplexing (BEM) code
could allow the central nervous system to distinguish ascending
information from descending information and hence suggests a
different approach to their analysis.

Results
We consider a neural code where spike-timing patterns—single
spikes and bursts—are separated at the level of individual spike
trains before being averaged across a neural ensemble (Fig. 1A).
From classical studies on the firing rate (21, 26, 27), we expect
that the resulting time-varying rates of single spikes and bursts
can be related to the time-averaged rates, but for time-varying
stimuli they are generally not equal. How could rates of distinct
spike-timing patterns represent different input streams or fea-
tures? The simpler variant would be that single spikes and bursts
are generated by two independent cellular mechanisms that each
depend on one input stream alone. In this case, the ensemble
singlet rate and ensemble burst rate would encode these streams
independently. This possibility has been explored in the context
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Fig. 1. BEM for representing simultaneously two signals. (A) Schema of the
suggested neural code: One signal is delivered to the somata and another
to the apical dendrites of a neural ensemble. Each neuron responds with a
series of action potentials (black traces), which can be classified as isolated
spike events or burst events on the basis of the interspike interval. The total
number of events (blue dots) can be computed in each time bin to form an
event rate (blue bars). The burst probability (red bars) is calculated by tak-
ing the ratio of the number of bursts (orange dots) and the total number
of events for each time step. (B–F) Computational simulation to illustrate
the neural code. (B) Alternating somatic and dendritic input currents were
used as inputs to a population of 4,000 two-compartment neuron models
(25). Phase lag and amplitudes were chosen such that (C) the output fir-
ing rate remains largely constant, to illustrate the ambiguity of the firing
rate code. (D) The ensemble burst rate reflects a conjunction of somatic
and dendritic inputs. (E) The burst probability reflects the alternating den-
dritic input. (F) The ensemble event rate reflects the alternating somatic
input. Shaded regions show two standard deviations, calculated over
five trials.

of single-cell firing of the thalamus (14, 28), hippocampus (29),
cortex (30, 31), and electrosensory lateral lobe (ELL) (32–34).

Alternatively, bursts could be generated by a synergy of the
two input streams, namely conjunctive bursting. Cellular and
molecular mechanisms for burst firing in the thalamus (14, 35),
the superficial ELL (34), L2–3 pyramidals (36), CA1 pyramidals
(37, 38), and TPNs (30) can be said to burst in response to a
conjunction of distinct streams of information. Since in this case
both singlet rate and burst rate represent a mixture of the two
input streams, contrasting singlet and burst rates is not likely to
reveal independent information.

In TPNs, dendritic spikes convert a somatically induced sin-
glet into a burst via the activation of a calcium spike in the
dendrites (30). Therefore, we reason that, in TPNs, a dendritic
input stream is represented by the probability that a somatically
induced spike is converted into a burst (33). On the ensemble
level, this burst probability, F , is reflected by the fraction of
active cells that emit a burst (Fig. 1A). Then, a somatic input
stream should be reflected in the rate of either singlet or burst
events (22). We termed this quantity the event rate (Fig. 1A),
E , and it is calculated by taking the sum of the singlet rate
and the burst rate. This event rate equals the firing rate only
in the absence of bursting and is otherwise smaller. In this
nomenclature, the burst rate, B , is by definition a conjunction
B =EF . Each of these quantities— B , E , and F—represents
a distinct signal, which may need to be communicated to a
specific target.

Although burst coding was the focus of many theoretical
(31, 39–42) and experimental (32–34, 38, 43, 44) studies and
although ensemble burst coding may have been implied in
some experimental studies (38, 44), its potential as a neural
code for multiplexing has not been explored previously. In the
following, we use computational modeling and theoretical anal-
yses to show that the anatomy and the known physiology of
the neocortical networks are consistent with this neural code
for TPNs.

Encoding: Dendritic Spikes for Multiplexing. To illustrate the BEM
code in cortical ensembles, we first consider the firing statis-
tics of model TPNs as they respond to alternating dendritic
and somatic input shared among neurons (Fig. 1B). Individual
TPNs are simulated using a two-compartment model that has
been constrained by electrophysiological recordings to capture
dendrite-dependent bursting [SI Appendix, Fig. S1 A–D (30)], a
critical frequency for an after-spike depolarization [SI Appendix,
Fig. S1 E–H (45)], and the spiking response of TPNs to complex
stimuli in vitro (46). In addition to the shared alternating signals,
each cell in the population receives independent background
noise to reproduce the high variability of recurrent excitatory
networks balanced by inhibition, as well as low burst fraction
and the typical membrane potential SD observed in vivo (47–
49) (Materials and Methods). As a result, simulated spike trains
display singlets interweaved with short bursts of action poten-
tials. Both types of events appear irregularly in time and are
weakly correlated across the population (SI Appendix, Fig. S2,
mean pairwise correlation coefficient <0.005). In the example
illustrated in Fig. 1, the dendritic and somatic inputs were cho-
sen to yield an approximately constant firing rate (Fig. 1C).
This illustrates the ambiguity of firing-rate responses: The same
response could have arisen from a constant somatic input. The
burst rate (Fig. 1D) is also ambiguous as it signals the conjunc-
tion of somatic and dendritic inputs. However, this ambiguity can
be resolved since a strong dendritic input is more likely to con-
vert a single spike into a burst. Indeed, the event rate and burst
probability qualitatively recover the switching pattern injected
into the dendritic and somatic compartments, respectively (Fig.
1 E and F). Thus, it emerges that TPNs can simultaneously com-
municate many different functions of the somatic and dendritic
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inputs, depending on the spike-timing patterns considered in the
ensemble average.

To determine the dynamic range of this multiplexing, we char-
acterize the input–output (I-O) function of the ensemble by
simulating the population response to short 20-ms current pulses
of varying amplitude, delivered simultaneously to all compart-
ments (Fig. 2 A and B). Consistent with earlier computational
work and in vitro recordings of the time-averaged firing rate
(31, 42, 50, 51), the ensemble firing rate grows nonlinearly with
the somatic input, with a gain that is modulated by concomi-
tant dendritic input (Fig. 2C). Also consistent with the single-cell
notion that bursts signal a conjunction of dendritic and somatic
inputs (30), the ensemble burst rate in our simulations strongly
depends on both somatic and dendritic inputs (Fig. 2D). The
event rate increases nonlinearly with the somatic input (Fig.
2E), but is less modulated by the dendritic input than the firing
rate, consistent with an encoding of the somatic input stream.
The dynamic range of the event rate is limited to small and
moderate input strengths since the event rate saturates when
somatic input is sufficiently strong to produce a burst in all of
the cells. Similarly, burst probability is driven by the dendritic
input strength. There is a weak modulation by the concomi-
tant somatic input (Fig. 2F), but it is overall consistent with our
hypothesis that burst probability encodes the dendritic informa-
tion stream. The dynamic range of burst probability is limited
by small to moderate dendritic inputs since strong dendritic
inputs produce bursts across the entire population, saturating the
I-O function.

We summarize the above results by a phenomenological
model of the different responses. The ensemble firing rate, or
activity A(Is , Id), depends on the somatic input, Is , but is also
modulated by the dendritic input, Id (Fig. 2C). This bivariate
function can be separated into a sum of two univariate functions,
an event rate E(Is) and a modulation which corresponds to the
number of additional spikes n incurred by bursts controlled by
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Fig. 2. I-O functions for distinct spike-timing patterns. (A) The two-
compartment TPN model combines dendrite-dependent burst firing in the
presence of high somatic and dendritic inputs with background noise. (B) I-
O functions are computed by simulating the response of 4,000 TPNs to short
current pulses and averaging across the ensemble. (C) The ensemble firing
rate as a function of the somatic input amplitude is shown in the presence
of a concomitant dendritic input (0 pA, 200 pA, 400 pA; thicker line corre-
sponds to larger dendritic input). (D) The ensemble burst rate as a function
of the dendritic input amplitude is shown in the presence of concomitant
somatic input pulses (0 pA, 200 pA, 400 pA; thicker line corresponds to
greater somatic input). (E) Same as C but for the ensemble event rate. (F)
Same as D but for the burst probability, computed by dividing the ensemble
burst rate by the event rate. Gray bars indicate the input regimes associated
with SNRI > 1 (SI Appendix, Data Analysis Methods).

univariate probability F (Id):

A=E(Is) [1+nF (Id)]. [1]

Since the burst rate B =EF and the single spike rate S =E −B
are both bivariate, the decomposition of the response into event
rate and burst probability can recover two independent chan-
nels. Without advocating which of these spike-timing patterns,
A, E , B , S , and F , are used by the nervous system, we can
best assess the information content by focusing on univariate
quantities E(Is) and F (Id).

To quantify the quality of this multiplexing, we compute a
signal-to-noise ratio (SNRI ), which is high for a response that
is strongly modulated by the input in one compartment but
invariant to input in the other (SI Appendix, Data Analysis Meth-
ods). We find that both the burst probability and the event rate
reached larger SNRI than either the burst rate or the firing rate
(maximum SNRI > 250 for burst probability and >1,000 for the
event rate vs. SNRI < 10 for the firing rate and <5 for the burst
rate; SI Appendix, Fig. S3). Also, the range of input amplitudes
with an SNRI > 1 is broader for burst probability than for burst
rate (gray regions in Fig. 2 E and F). For very high inputs, the
clear invariance of the somatic and the dendritic input in event
rate and burst probability breaks down (SI Appendix, Fig. S4),
because bursts can be triggered by somatic or dendritic input
alone and are no longer a conjunctive signal. Therefore, multi-
plexing of dendritic and somatic streams is possible, unless either
somatic or dendritic inputs are very strong. The low firing rates
and sparse occurrence of bursts typically observed in vivo (47–49)
are in line with this regime.

Information-Limiting Factors in Multiplexing. Previous studies that
were not based on ensemble coding have shown that bursts
encode the slowly varying part of sensory inputs only (34, 52).
Given the need for fast cortical communication (53), we ask
whether BEM is limited in terms of how fast it can encode
two input streams. To this end, we simulated the response of
an ensemble of TPNs receiving two independent input signals,
one injected into the dendrites and the other injected into the
somata. Both inputs are time dependent and fluctuate with equal
power in fast and slow frequencies over the 1- to 100-Hz range
(SI Appendix, Computational Methods). As a first step, we con-
sider the case of a very large ensemble (80,000 cells) to minimize
finite-size effects. Since the I-O functions obtained from pulse
inputs (Fig. 2) are approximately exponential in the moderate
input regime, we use the logarithm of the burst probability as
an estimate of the dendritic input and the logarithm of the
event rate as an estimate of the somatic input. Although crude
compared with decoding methods taking into account pairwise
correlation and adaptation (54–56), this simple approach recov-
ers accurately both the somatic and dendritic inputs (Fig. 3 A
and B and SI Appendix, Fig. S5), with deficits primarily for rapid
dendritic input fluctuations. To quantify the encoding quality at
different timescales, we calculate the frequency-resolved coher-
ence between the inputs and their estimates. The coherence
between dendritic input and its estimate based on the burst
probability (Fig. 3B) is close to one for slow input fluctuations,
but decreases to zero for rapid input fluctuations. Concurrently,
the event rate can decode the somatic input with high accuracy
for input frequencies up to 100 Hz (Fig. 3B). When somatic
input is much stronger than dendritic input, it is still possible
to recover slowly changing dendritic information by considering
the burst probability (Fig. 3C and SI Appendix, Fig. S5). In all
cases the coherence is at least as high, but typically surpasses
the coherence obtained from the classical firing-rate code, indi-
cating that burst multiplexing matches but typically surpasses
the information contained in the firing rate. To rule out that
bursts would reflect merely the overall strength of the two inputs
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Fig. 3. Decoding multiplexed time-dependent information. (A) Two uncorrelated time-dependent inputs are injected into distinct subcellular compart-
ments. Multiplexing suggests that more information can be decoded by considering burst probability and event rate as estimates of the dendritic and
somatic inputs, respectively. Classical firing rate coding suggests that information can be decoded by considering the firing rate as an estimate of summed
dendritic and somatic inputs. (B) For strong dendritic inputs, the coherence of the dendritic input (Top) and of the somatic input (Bottom) is shown with
respect to burst probability (red), event rate (blue), and firing rate (black). Increasing the sensitivity of dendritic excitability increases the bandwidth of burst
probability (pink dashed line) without altering the event rate (cyan dashed line). (C) Same as B but for dendritic input of small amplitude and somatic input
of large amplitude. (D) For comparison, we simulate the injection of the same inputs as in A into the somatic compartment. (E and F) The coherence for (E)
the case of stronger input 1 or for (F) the case of stronger input 2.

combined, we considered a scenario where the same two inputs
are injected into the soma (Fig. 3 D–F and SI Appendix, Fig. S6).
In this case the firing-rate code is most informative and reports
only the strongest input. These observations support the idea
that active dendrites enable ensembles to increase information
representation via multiplexing.

We now ask, What limits the coherence bandwidth of the burst
probability (Fig. 3C)? If it were limited by the dendritic mem-
brane potential dynamics, coding could in principle be improved
by changing membrane properties. If it were limited by the finite
duration of bursts, which effectively introduces a long refractory
period before the next burst can occur, this could introduce a
fundamental speed limit for BEM. To investigate the latter, we
performed an information-theoretic analysis of the BEM code,
which indicates that the refractory period does not affect the
bandwidth of BEM for sufficiently large ensembles, consistent
with previous theoretical work (57). Alternatively, the mem-
brane dynamics in the dendrite could limit the bandwidth. Slow
passive dynamics in the apical dendrites are not likely to be a
limiting factor, because the high density of the hyperpolarization-
activated ion channels (58) contributes to a particularly low
dendritic membrane time constant (46). The other possibility is
that the slow onset of dendritic spikes limits the bandwidth (59).
This possibility would be compatible with slow calcium spike
onsets observed, arising from the kinetics of calcium ion channels
(60). Therefore, we simulated the response to the same time-
dependent input shown in Fig. 3 but with a threefold increase
of the voltage sensitivity for dendritic spikes, to accelerate the
onset of dendritic spikes. This single manipulation considerably
improved the encoding of high-frequency fluctuations (Fig. 3 B
and C and SI Appendix, Fig. S7). Thus, the slow onset of den-
dritic spikes indicates that TPNs sacrifice bandwidth to represent
slowly changing information.

The total amount of information transmitted depends on a
variety of extrinsic and intrinsic factors. The main extrinsic fac-
tors are the power and the bandwidth of the input signals. High
power is manifested in large input changes, which can strongly
synchronize cells and can thus increase the ensemble response.
Consistently, the coherences obtained in the previous section
depend strongly on our choice of input power. For instance,
decreasing the relative power in the dendrites decreases the
coherence obtained from the burst probability (Fig. 3 C and

D). To arrive at a more objective assessment of multiplexing,
we derived mathematical expressions for the event and burst
information rates, assuming low pairwise correlations (61). The
neurons are receiving a fixed total input power P separated
equally in the two compartments and are emitting a fixed total
number of spikes per unit time A0 (SI Appendix, Theoretical
Methods). The information rate from the event rate increases
with the number of neurons N and the frequency bandwidth W ,
but decreases with the number of spikes per bursts n and the
stationary burst probability F0:

ME =W log2

(
1+

NA0P

2(1+nF0)W

)
. [2]

Similarly, the burst probability can communicate additional
information at a rate which increases with stationary burst
probability:

MF =W log2

(
1+

NA0F0(1−F0)P

2(1+nF0)W

)
. [3]

We can compare the multiplexing information obtained by sum-
ming, ME+MF , with the information obtained from the clas-
sical firing rate with total input power P and emitting the same
total amount of spikes per unit time A0:

MA =W log2

(
1+

NA0P

W

)
. [4]

Since both the input power and the output power are matched
in the multiplexing code and the classical firing-rate code, these
expressions can be used to determine the conditions under which
multiplexing is advantageous.

First, we find that there is an optimal burstiness, i.e., mean
burst probability, for which information transmission is max-
imized (Fig. 4A). This optimum arises from the fact that
rare bursting sacrifices information from the dendritic stream,
whereas frequent bursting must sacrifice information from the
somatic stream to meet the constraint of total number of spikes.
This optimal burstiness depends on the number of spikes in a
burst and the bandwidth of the two channels. It decreases with
the number of spikes per burst (Fig. 4B), in line with the notion
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Fig. 4. Short and sparse bursts are optimal for multiplexing. (A) Theoretical
estimates of total multiplexed information constrained to a fixed total num-
ber of spikes (black curves, Eqs. 2 and 4). The information varies as a function
of the stationary burst probability and has a maximum for low burst proba-
bility (black circles), consistent with bursting statistics in vivo (47). The three
black curves correspond to three burst sizes (2, 3, and 6 spikes per burst),
illustrating that the smaller burst size communicates the greater amount of
information. The information rate for a firing-rate code with matched input
amplitude and stationary firing rate is shown for comparison (red dashed
line, Eq. 4). (B) The optimal mean burst probability decreases as a func-
tion of burst size. It reaches 31% for typical burst size [corresponding to an
average of 2.3 spikes per burst (47), dotted line] for parameters as in A. Con-
sidering slower dendritic dynamics Wd = 0.2Ws reduces the optimal burst
probability (magenta curve). (C) The maximum information rate (solid black
curves, N = 10, 102, and 103) decreases as a function of burst size. It surpasses
the information of the firing-rate code with matched input amplitude and
stationary firing rate (red lines, for corresponding N) for sufficiently large
ensembles and for small burst sizes. (D) For matched input amplitude and
output rate, the total multiplexed information gain relative to the infor-
mation rate of the firing rate (Eq. 2 plus Eq. 3 over Eq. 4) asymptotes to
two (dashed line). The area where the classical firing rate offers an advanta-
geous coding strategy is shaded gray. When not specified, parameter values
were p = 0.5, N = 100, P = 20 (49, 62), F0 = 0.5, n = 1, Ws = Wd = 100 Hz,
and A0 = 10 Hz (SI Appendix, Theoretical Methods).

that long bursts convey little information per spike and should
hence be used more sparsely. The optimal burstiness further
decreases with decreasing dendritic bandwidth (Fig. 4B), that
is, for neurons with slower dendritic dynamics. The information
transmitted decreases with the number of spikes per burst (Fig.
4C), in line with the intuition that the second spike in a burst
marks the event as a burst, whereas additional spikes contain
no further information. Hence, for neurons with slow dendritic
dynamics, BEM performs best when bursts are short and occur
rarely, in line with experimental observations (47). Finally, the
preference for short bursts is independent of the number of neu-
rons in the ensemble (Fig. 4C), but a minimal number of neurons
is required to transmit more information than a rate code with
the same firing rate and number of neurons (Fig. 4 C and D). If
the somatic and dendritic compartments have the same band-
width, the total information transmitted by BEM approaches
twice the information of a classical rate code, in the limit of
very large ensembles (Fig. 4D). In summary, the theoretical anal-
ysis suggests that short and sparse bursts in a large ensemble
maximize information transmission in burst multiplexing.

Decoding: Cortical Microcircuits for Demultiplexing. For the brain
to make use of a multiplexed code, the different streams have to
be decodable by biophysical mechanisms. Previous experimental
(63) and theoretical (52, 64) studies have argued that short-term
plasticity (STP) can play a role in facilitating or depressing the
postsynaptic response of bursts. We have argued that ensem-
bles of TPNs may represent distinct information not in the rate
of single spikes and bursts, but in the event rate and the burst
probability. To test if STP can be used to recover these ensem-
ble features, we simulated cell populations receiving excitatory
input from TPNs and studied how the response of these postsy-
naptic cells depends on the input to TPNs (Fig. 5). As a model
for STP, we used the extended Tsodyks–Markram model (63)
with parameters constrained by the reported properties of neo-
cortical connections (65) (SI Appendix, Computational Methods).
By decreasing the postsynaptic effect of additional spikes in a
burst, short-term depression (STD) could introduce a selectiv-
ity to events, particularly for short bursts and strong depression.
Indeed, we find that in a population of cells receiving excitatory
TPN inputs, responses correlated slightly more with event rate
when STD was present than without STP (SI Appendix, Fig. S8
A and B). The presence of STD affects the range of SNRI above
one only weakly, but increases the maximum reached by SNRI

considerably (SNRI reaches 120 with STD and is below 30 with-
out STD; SI Appendix, Fig. S9 A and B). STD can hence be inter-
preted as an event rate decoder. In turn, since the TPN event
rate encodes the somatic stream (Fig. 2), it is not surprising that
we find STD to further suppress the weak dependence on den-
dritic inputs, while maintaining the selectivity to somatic input
(Fig. 5B). Hence STD improves the selective decoding of the
somatic stream.

We then ask whether postsynaptic neurons can decode the
conjunction of somatic and dendritic inputs. By increasing the
postsynaptic effect of later spikes in a burst (63, 64, 66),
short-term facilitation (STF) boosts the sensitivity to bursts (SI
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Fig. 5. The role of STP and disynaptic inhibition for separating distinct
information streams. (A) Alternating somatic and dendritic inputs are
injected in 4,000 TPNs. (B–D, Left) Response of population postsynaptic
to the TPNs under alternating inputs (solid line; shaded area shows 2 SDs
around the mean). (Right) Responses of postsynaptic population for short
pulse inputs to TPNs shown as a function of the amplitude of somatic and
dendritic pulses. The different lines show the response in the presence of
a 200-, 300-, and 400-pA (thicker) concomitant input (somatic input when
abscissa is dendritic and vice versa). Gray shading highlights range with
SNRI > 1. (B–D) The firing-rate response of neurons postsynaptic to TPNs is
shown for synapses (B) with STD, (C) with STF along x-axis and constant
inhibition, and (D) with STF and disynaptic inhibition.
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Appendix, Fig. S8C) and hence to the dendritic stream (Fig. 5C
and SI Appendix, Fig. S9C). To decode the dendritic stream, neu-
rons should compute a quantity similar to the burst probability
(Fig. 2D). We reason that neural computation of burst proba-
bility could be achieved by combining burst rate sensitivity with
divisive disynaptic inhibition from an event rate decoder. Thus,
we consider a population receiving facilitating excitatory input
from TPNs, combined with disynaptic inhibition from an STD-
based event rate decoder. We manually adjusted the weights of
these connections to increase the postsynaptic effect of dendritic
inputs, while decreasing the postsynaptic effect of somatic input.
This was achieved with potent excitation and inhibition, a regime
associated with divisive inhibition (39, 67). The output rate of
this microcircuit displayed a higher correlation with burst prob-
ability than that of a microcircuit without disynaptic inhibition
(SI Appendix, Fig. S8D). This microcircuit can selectively decode
dendritic input (Fig. 5D) with an SNRI above 1 over a large
range of dendritic input amplitudes (SI Appendix, Fig. S9D). Is
the presence of STD essential to this operation? In line with
the weak dependence of TPN firing rate on dendritic input, we
find that the presence of STD in this microcircuit is not essential
since decoding of the dendritic stream can also result from STF
combined with disynaptic inhibition without STD (SI Appendix,
Fig. S9 E and F). We conclude that a microcircuit with STP and
disynaptic inhibition in a divisive regime can selectively extract
different input streams from a multiplexed neural code.

Gain Control of Multiplexed Signals. To transmit significant infor-
mation, the burst code relies on a graded increase of the burst
rate as a function of dendritic and somatic inputs, which is at
odds with the all-or-none nature of calcium spikes in single cells
(30) and ensembles (31). Three mechanisms can linearize the I-
O function and transform an all-or-none response into a graded
one. These mechanisms are background noise, spike-frequency
adaptation, and feedback inhibition. For fast and reliable encod-
ing, feedback inhibition is the most efficient since linearization
is faster than with adaptation and the SNR better than with
background noise. Feedback dendritic inhibition (FDI) is medi-
ated in the neocortex by somatostatin-positive neurons (SOMs),
which receive input from TPNs (66) and project back to the
apical dendrites of the same ensemble. FDI is known to lin-
earize dendritic activity (68, 69) and may therefore linearize the
burst probability, while feedback somatic inhibition linearizes the
event rate. But since SOMs are activated by the TPNs, both
somatic and dendritic inputs may reduce the burst probabil-
ity, breaking the segregation of dendritic and somatic streams.
Therefore, we ask whether FDI inhibition can linearize the
burst response without introducing a coupling between the two
input streams.

To this end, we simulated TPNs receiving feedback inhibition
from a burst-probability decoder (Fig. 6A and SI Appendix, Fig.
S10 A–D). We find that the presence of such FDI reduces the
average burst length (Fig. 6B), consistent with similar experi-
mental manipulations in the hippocampus (70). Also, there is
a weaker gain modulation of the firing rate I-O function com-
pared with TPNs without FDI (Fig. 6C). Inhibition from the
burst probability decoder motif does not abolish bursting in
the TPNs but reduces both the overall proportion of bursts and
the gain of the burst-probability I-O function (Fig. 6D). Impor-
tantly, this form of FDI does not change the invariance of the
burst probability to somatic input, so the multiplexed code is con-
served (Fig. 6D). We suggest that this invariance requires that
FDI is primarily driven by dendritic input to TPNs. The effect of
somatic input to TPNs is counteracted by the disynaptic inhibi-
tion. When divisive disynaptic inhibition in the burst-probability
decoder is replaced by a constant hyperpolarizing current (Fig.
6E and SI Appendix, Fig. S10 E–H), FDI becomes strongly modu-
lated by somatic input (SI Appendix, Fig. S10H). Although bursts
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Fig. 6. Dendritic feedback inhibition controls multiplexing gain. (A)
Schematic representation of the simulated network. (B) Burst size averaged
across simulated input conditions with and without FDI. (C) Dependence
of TPN firing rate on somatic input for three different amplitudes of den-
dritic input pulses (0 pA, 200 pA, and 400 pA). Inset shows zoom-in close to
firing-rate onset. (D) Dependence of burst probability on the dendritic input
for three different somatic input amplitudes (0 pA, 200 pA, and 400 pA).
The thicker line shows the response with the strongest somatic input. (E–H)
As in A–D, but replacing disynaptic inhibition by a hyperpolarizing current
(430 pA). In this case, the burst probability generally decreases with somatic
input (H). Asterisks in B and F indicate significant difference (Welch’s t test,
P < 0.0001). Dashed lines in C, D, G, and H show response in the absence of
FDI (corresponding to thick lines in Fig. 2).

remain shorter (Fig. 6F) and sparser (Fig. 6H), and although
the gain of the firing-rate response is reduced in a very simi-
lar fashion (Fig. 6G), the burst probability loses its invariance
with respect to somatic input (Fig. 6H). Therefore, FDI from
the burst-probability decoder motif seen in anatomical studies
(71) is required to control the gain of the dendritic signal while
at the same time maintaining short and sparse bursts. Such a
mechanism is essential for optimal information transfer in the
multiplexed neural code.

Discussion
We have introduced a neural code able to simultaneously com-
municate two streams of information through a single neural
ensemble. This neural implementation of multiplexing is distinct
from time-division (23, 72) and frequency-division multiplexing
(18) and is specific to communication with spike trains. Contrary
to single-cell burst coding (34), we have found that ensemble
burst coding can encode quickly changing inputs, although pro-
cessing speed may be limited by the biophysical properties of
active dendrites. This code is optimal for short and sparse bursts,
which is consistent with observed bursting in L2–3 and L5B cells
(47). Finally, we have illustrated in simulations how ensemble
multiplexing suggests specific connectivity motifs to demultiplex
burst coded information. We believe that this neural code satis-
fies the need to communicate different quantities in top–down
and bottom–up directions through the same neurons.

Extensions of Multiplexing. Is BEM antagonizing frequency-
division multiplexing? Frequency-division multiplexing has been
suggested on the basis of experimental observations (15, 17).
Burst coding can in theory supplement this type of code since dis-
tinct types of events may synchronize to distinct frequency bands.
This idea is supported by experimental evidence from two stud-
ies in nonhuman primates. In the first study (73), bursts were
shown to synchronize to distinct bands of the local field poten-
tial compared to single spikes. In the second study (17), mutual
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information between sensory stimuli and neural responses is
shown to increase when spike patterns are taken into account in
addition to the local field potential. Also, in this study it is inter-
esting to note that mutual information increases further when
spike patterns are taken into account in addition to the firing
rate, in an amount consistent with our derivations. We can there-
fore not rule out that spike timing patterns can be combined with
frequency-division multiplexing.

For clarity of the exposition, we have limited our discus-
sion to a distinction between singlets and bursts. It is has been
suggested that the size of bursts may encode additional infor-
mation (29, 74). One can generalize BEM to capture three
distinct inputs controlling three types of events, namely singlets,
short bursts, and long bursts. A postsynaptic decoding of such a
complex temporal ensemble code would probably require intri-
cate dynamics of STP (75), however, potentially combined with
microcircuits.

Potential Roles for Multiplexing. Multiplexing allows one to
increase the information conveyed by a fixed number of axons. It
could therefore be a solution to the energy and space constraints
associated with sending information over long distances. TPNs
are known to project to subcortical targets including the collicu-
lus, pons, and medulla (76). The axons of TPNs in the motor
cortex axons are notoriously long since these synapse to motor
neurons in the spinal cord (77). Neurons in layer 5 also send
a smaller number of axons to other cortical targets intrahemi-
spheric (78) or interhemispheric (76). Since in the majority of
these projections the distance is considerable, the energetic cost
of spikes is high, and multiplexing may have arisen to reduce the
amount of energy per bit.

Another line of experimental evidence suggests that the same
cellular and synaptic mechanisms enabling multiplexing are
essential for learning (79) and perception (80). In multiple areas
outside neocortex, bursting in particular has been associated with
both learning (81, 82) and perception (14, 44). While further the-
oretical work is required, this suggests that bursting does more
than allowing cells to preserve two types of information unal-

tered through multiple processing stages (Fig. 7A). Instead, a
learning signal, in accordance with a powerful learning algorithm
(12), can be sequentially altered by the sensory information as it
is back propagating through the network (Fig. 7B). All of the
while, sensory information can climb the hierarchy unaltered
by the learning-related signal. Experimental design and analy-
sis in view of this neural code are required to shine a light on
these issues.

Limitations of Multiplexing. Theoretical studies on frequency-
division multiplexing have shown that this type of multiplexing
can encode time-varying information only for slowly changing
inputs (83). This theoretical constraint is supported by exper-
imental assessment of the relative increase in information in
spike phase compared with spike rate (17). Although theoreti-
cally BEM does not suffer from this constraint and can be used
to communicate rapidly changing information, the properties
of dendritic spike initiation will in practice limit multiplexing
to slowly changing information as well. The slower fluctuations
observed in higher-order areas (84) suggest that this can be
an effective coding strategy given slower top–down information
impinging on the dendrites.

The multiplexing mode of burst coding described here is lim-
ited to a regime where inputs are small or moderate. In TPNs,
strong somatic inputs could trigger bursts of action potentials,
which would challenge an association between dendritic inputs
and burst probability. Since the regime where multiplexing can
arise (Fig. 2) is clearly reflected in the ensemble event rate and
burst probability, experiments could assess whether TPNs are
maintained in this regime or whether the ensemble can switch
between multiplexing and classical rate coding. Whether the
inhibitory motifs described here can pick up this switch of modes
is a question that lies beyond the scope of this study.

Another limitation lies in the assumption that spikes are prob-
abilistically converted into bursts independently across neurons.
Dendrites should hence be in an asynchronous state with weak
pairwise correlations. This asynchronous state was suggested to
enable rapid (85) and efficient (86) encoding. In our simulations,

A B

Fig. 7. Potential functional roles of BEM. (A) When the descending connections have STF with disynaptic inhibition, top–down information can propagate
down unaltered by bottom–up information, via burst probability. Ascending connections with potent STD can communicate bottom–up information even
in the presence of potent descending drive. (B) When descending connections have STF without potent disynaptic inhibition, a conjunction of ascending
and descending information, the burst rate, is communicated down.
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the asynchronous state was mimicked by a substantial back-
ground noise that effectively desynchronized and linearized the
responses of both somatic and dendritic compartments. A physi-
ological basis for this background noise could lie in the stochastic
activation of ion channels (87–89) as well as in a state of bal-
anced excitation and inhibition, which is known to favor pairwise
decorrelation (48, 90) and could be supported by homeostatic
inhibitory synaptic plasticity (91). We have argued that FDI can
keep TPNs in a state of short and sparse bursts; it is natural to
suggest that FDI can also ensure asynchronous dendritic activity.
Burst ensemble coding hence requires a synergistic coordination
among single-cell bursting mechanisms, the morphological tar-
gets of different input streams on these cells, and neuronal circuit
motifs. Whether hallmarks of such a coordination can be found
in different neuronal systems remains an open question.

General Relevance. The proposed code may act in other parts of
the central nervous system where bursting has been observed.
We can now delineate several structural requirements and
predictions:
Sparse bursting. As recorded from a single cell in a stationary
and awake condition, bursts should be relatively rare and short.
Multiplexed tuning. A difference should be observed between
the tuning of trial-averaged burst probability and the tuning of
event rate.
Burst code linearization. Feedforward inhibition, feedback inhi-
bition, adaptation, and intrinsic noise are cellular-level mecha-
nisms that can mediate a linearization of an ensemble rate. These
mechanisms should be observed in the compartment responsible
for modulating the burst probability.

We briefly discuss these in relation to bursting in the ELL, the
cerebellum, the thalamus, the hippocampus, and the neocortex.

Sparse Bursting. Across the nervous system, bursts are generally
much less numerous than isolated spikes. Specifically, the burst
probability associated with the quiet awake state is in the range
of 10–30% in sensory cortex (47), prefrontal cortex (73), ven-
tral thalamus (92), and Purkinje cells (93). In all these areas,
bursts are also short, with an average number of spikes per
burst ranging between 2 and 4. In the CA1 region of the hip-
pocampus, bursts are generally much longer, but also much less
frequent [stationary burst probability between 1% and 2% (38)].
These observations are generally in accordance with the maxi-
mization of multiplexed information (Fig. 4). We are aware of
only one exception: Granule cells of the dentate gyrus fire a great
proportion of relatively long bursts (94).

Multiplexed Tuning. Experiments rarely report the tuning of burst
responses. When this is done, single spike rate is often contrasted
with burst rate instead of burst probability. In the neocortex,
burst probability is associated with attention (73), perception
(80), and, theoretically, an error signal (13). In the ELL, burst
probability signals different dynamic features of the electric stim-
ulation than tonic spikes (44). These observations are loosely
consistent with multiplexing, but they warrant targeted investi-
gations. The question of burst-probability tuning was specifically
addressed in a recent study in Purkinje cells (93). It was shown
that the burst probability is tuned to the direction of saccade
errors and that this tuning is opposite to the tuning direction of
simple spikes. This forms a more rigorous agreement with the
principle of burst multiplexing.

Burst Code Linearization. In the neocortex, linearization is likely
implemented through feedback and feedforward inhibition of
the apical dendrites. Characteristically, neocortical pyramidal
cells send facilitating connection to SOMs and short-term
depression to parvalbumin-positive (PV) cells (63, 95). A sub-
type of SOM cells, the Martinotti cells, inhibits specifically the

dendrites and acts as a powerful control of dendritic spikes (30,
68, 69). These cells also receive inhibition from PV cells (71). We
therefore find a feedback inhibition motif consistent with Fig.
6A. In addition, since both thalamocortical projections and top–
down cortical projections are thought to project both onto the
apical dendrites and to SOM cells (96, 97), SOM cells can control
the ensemble response via feedforward as well as feedback inhi-
bition. Interestingly, thalamocortical projections follow the rule
STF onto SOM cells and STD onto PV cells (96). The slow mem-
brane potential dynamics of Martinotti cells also appear ideal for
the encoding of slowly changing burst-coded information (Fig.
3). This suggests that Martinotti cells are well poised to encode
burst probability and provide targeted feedback inhibition to the
dendrites of pyramidal cells.

In the hippocampus, SOM cells share similar connection
motifs and intrinsic properties with Martinotti cells. These cells
may therefore preserve sparse and short bursts while simultane-
ously linearizing the ensemble response of pyramidal cells in the
CA1 region through feedback and feedforward inhibition of the
apical dendrites (70, 98). Similarly, dendrite-targeting inhibition
can have the same role of linearizing ensemble burst responses in
the cerebellum (99) and the ELL (100). In the thalamus, burst-
ing via potent inhibition (101) would require a linearization and
burst dependence of local inhibition.

To conclude, we have exposed how active dendrites need
microcircuits and STP to support a multiplexed neural code.
Direct experimental assessment of this code may help us to estab-
lish whether it generalizes across the central nervous system and
what algorithmic function it subserves.

Materials and Methods
Data analysis. Bursts are defined as a set of spikes followed or preceded by
an interspike interval smaller than 16 ms. Burst rate is calculated by find-
ing all bursts and summing across the population. Event rate is calculated
by finding all isolated spikes and the first spike in a burst before summing
across the population. Burst probability is calculated as the ratio of the burst
rate over the event rate. A smoothing kernel of 10 ms is used for displaying
the time-dependent rates.

Network Simulations. The network consists of four types of units: pyramidal-
cell basal bodies, pyramidal-cell distal dendrites and inhibitory cells from
population a receiving STF and from population b receiving STD. We used
the lowercase letters s, d, a, and b to label the different units, respectively.
Somatic dynamics follow generalized integrate-and-fire dynamics described
by a membrane potential u and a generic recovery variable w to account for
subthreshold-activated ion channels and spike-triggered adaptation (27).
For the ith unit in population x we used

d

dt
u(x)

i =−
u(x)

i − EL

τx
+

gxf(u(d)
i ) + cxK(t− t̂(s)

i ) + I(x)
i + w(x)

i

Cx
[5]

d

dt
w(x)

i =−w(x)
i /τ

(x)
w + a(x)

w

(
u(x)

i − EL

)/
τ

(x)
w + b(x)

w S(x)
i , [6]

where EL is the reversal potential, Cx the capacitance, a(x)
w the strength of

subthreshold adaptation, b(x)
w the strength of spike-triggered adaptation,

τ (x)
w the timescale of the recovery variable, and τx the timescale of the mem-

brane potential (see SI Appendix, Computational Methods for parameter
values). An additional term controlled by gx (Eq. 5) models the regenerative
activity in the dendrites as described below, but is absent from inhibitory
cells (ga = gb = 0). Also, an additional term controlled by cx and the kernel
K (SI Appendix, Computational Methods) models how the last action poten-
tial at t(s)

i is back propagating from the soma in the dendrites and is absent
from all other units (cs, ca, cb = 0). When units s, a, and b reach a thresh-
old at VT , the membrane potential is reset to the reversal potential after an
absolute refractory period of 3 ms and a spike is added to the spike train S(x)

i
in the form of a sum of Dirac δ functions.

The dendritic compartment has nonlinear dynamics dictated by the sig-
moidal function f to model the nonlinear activation of calcium channels
(46). This current propagates to the somatic unit such that gs controls the
somatic effect of forward calcium spike propagation. In the dendritic com-
partment, the parameter gd controls the potency of local regenerative
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activity. The dendritic recovery variable controls both the duration of
the calcium spike consistent with potassium currents (102, 103) and res-
onating subthreshold dynamics consistent with the h current (58). Note
that the differential equations are similar to those used to model NMDA
spikes (104), but the strong and relatively fast recovery variable ensures
that the calcium spikes have shorter durations (10–40 ms). Membrane
time constants were matched to values found in vivo (95) (SI Appendix,
Table S1).

Each unit receives a combination of synaptic input, external input, and
background noise (SI Appendix, Computational Methods). Synapses were
modeled as exponentially decaying changes in conductance. Connection
probability was chosen to be 0.2 for excitatory connections and 1 for
inhibitory connections consistent with experimental observations (95, 105).
Background noise was modeled as a time-dependent Ornstein–Uhlenbeck
process independently drawn for each unit. We chose the amplitude of

background fluctuations to be such that the SD of membrane potential fluc-
tuations is around 6 mV as observed in V1 L2–3 pyramidal neurons (49). To
model STP, we used the extended Tsodyks–Markram model (63) with param-
eters consistent with experimental calibrations in vitro (65) (SI Appendix,
Computational Methods).
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